Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.528
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38563180

RESUMO

Cartilage mesenchyme hamartoma originates from the mesoderm and contains a blend of interstitium and cartilage, which is mostly benign tumor and is a non-neoplastic cartilage lesion with self-limiting hyperplasia. This article reports a infant with cervical chondromesenchymal hamartoma in the neck, the main clinical manifestations of which are asphyxia and acute respiratory distress, and the imaging features are often similar to those of malignant tumors.Radical resection operation under general anesthesia is the main treatment method, and the postoperative pathological diagnosis was cartilage mesenchyme, and immunohistochemistry showed Catenin(-),MDM2(+),CDK4(-),H3K36M(+),Myogenin (-),SMA (-).The clinical characteristics and diagnosis and treatment process of this case are reported and related literature is reviewed.


Assuntos
Cartilagem , Hamartoma , Humanos , Recém-Nascido , Imuno-Histoquímica , Mesoderma/patologia
2.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602485

RESUMO

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Assuntos
Diferenciação Celular , Via de Sinalização Hippo , Morfogênese , Miofibroblastos , Proteínas Serina-Treonina Quinases , Alvéolos Pulmonares , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Morfogênese/genética , Mesoderma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Pulmão/metabolismo , Organogênese/genética , Regulação da Expressão Gênica no Desenvolvimento
3.
PLoS One ; 19(4): e0297853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635504

RESUMO

During vertebrate embryo development, the body is progressively segmented along the anterior-posterior (A-P) axis early in development. The rate of somite formation is controlled by the somitogenesis embryo clock (EC), which was first described as gene expression oscillations of hairy1 (hes4) in the presomitic mesoderm of chick embryos with 15-20 somites. Here, the EC displays the same periodicity as somite formation, 90 min, whereas the posterior-most somites (44-52) only arise every 150 minutes, matched by a corresponding slower pace of the EC. Evidence suggests that the rostral-most somites are formed faster, however, their periodicity and the EC expression dynamics in these early stages are unknown. In this study, we used time-lapse imaging of chicken embryos from primitive streak to somitogenesis stages with high temporal resolution (3-minute intervals). We measured the length between the anterior-most and the last formed somitic clefts in each captured frame and developed a simple algorithm to automatically infer both the length and time of formation of each somite. We found that the occipital somites (up to somite 5) form at an average rate of 75 minutes, while somites 6 onwards are formed approximately every 90 minutes. We also assessed the expression dynamics of hairy1 using half-embryo explants cultured for different periods of time. This showed that EC hairy1 expression is highly dynamic prior to somitogenesis and assumes a clear oscillatory behaviour as the first somites are formed. Importantly, using ex ovo culture and live-imaging techniques, we showed that the hairy1 expression pattern recapitulates with the formation of each new pair of somites, indicating that somite segmentation is coupled with EC oscillations since the onset of somitogenesis.


Assuntos
Proteínas Aviárias , Somitos , Animais , Embrião de Galinha , Galinhas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Aviárias/genética , Mesoderma/metabolismo
4.
Int J Oral Sci ; 16(1): 33, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654018

RESUMO

Precise orchestration of cell fate determination underlies the success of scaffold-based skeletal regeneration. Despite extensive studies on mineralized parenchymal tissue rebuilding, regenerating and maintaining undifferentiated mesenchyme within calvarial bone remain very challenging with limited advances yet. Current knowledge has evidenced the indispensability of rebuilding suture mesenchymal stem cell niches to avoid severe brain or even systematic damage. But to date, the absence of promising therapeutic biomaterials/scaffolds remains. The reason lies in the shortage of fundamental knowledge and methodological evidence to understand the cellular fate regulations of scaffolds. To address these issues, in this study, we systematically investigated the cellular fate determinations and transcriptomic mechanisms by distinct types of commonly used calvarial scaffolds. Our data elucidated the natural processes without scaffold transplantation and demonstrated how different scaffolds altered in vivo cellular responses. A feasible scaffold, polylactic acid electrospinning membrane (PLA), was next identified to precisely control mesenchymal ingrowth and self-renewal to rebuild non-osteogenic suture-like tissue at the defect center, meanwhile supporting proper osteointegration with defect bony edges. Especially, transcriptome analysis and cellular mechanisms underlying the well-orchestrated cell fate determination of PLA were deciphered. This study for the first time cellularly decoded the fate regulations of scaffolds in suture-bony composite defect healing, offering clinicians potential choices for regenerating such complicated injuries.


Assuntos
Regeneração Óssea , Tecidos Suporte , Transcriptoma , Animais , Regeneração Óssea/fisiologia , Poliésteres , Crânio/cirurgia , Células-Tronco Mesenquimais , Mesoderma/citologia , Diferenciação Celular , Engenharia Tecidual/métodos , Suturas Cranianas , Materiais Biocompatíveis
5.
Cells ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534393

RESUMO

Neuromesodermal progenitors (NMPs), serving as the common origin of neural and paraxial mesodermal development in a large part of the trunk, have recently gained significant attention because of their critical importance in the understanding of embryonic organogenesis and the design of in vitro models of organogenesis. However, the nature of NMPs at many essential points remains only vaguely understood or even incorrectly assumed. Here, we discuss the nature of NMPs, focusing on their dynamic migratory behavior during embryogenesis and the mechanisms underlying their neural vs. mesodermal fate choice. The discussion points include the following: (1) How the sinus rhomboidals is organized; the tissue where the neural or mesodermal fate choice of NMPs occurs. (2) NMPs originating from the broad posterior epiblast are associated with Sox2 N1 enhancer activity. (3) Tbx6-dependent Sox2 repression occurs during NMP-derived paraxial mesoderm development. (4) The nephric mesenchyme, a component of the intermediate mesoderm, was newly identified as an NMP derivative. (5) The transition of embryonic tissue development from tissue-specific progenitors in the anterior part to that from NMPs occurs at the forelimb bud axial level. (6) The coexpression of Sox2 and Bra in NMPs is conditional and is not a hallmark of NMPs. (7) The ability of the NMP pool to sustain axial embryo growth depends on Wnt3a signaling in the NMP population. Current in vitro models of NMPs are also critically reviewed.


Assuntos
Células-Tronco Neurais , Animais , Células-Tronco Neurais/fisiologia , Mesoderma , Camadas Germinativas , Transdução de Sinais , Sistema Nervoso
6.
Biol Open ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451093

RESUMO

Loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. Here, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. By engineering human induced pluripotent stem cells (hiPSCs) consisting of wild-type (WT), heterozygous (CDX2-Het), and homozygous null CDX2 (CDX2-KO) genotypes, differentiating these cells in a 2D gastruloid model, and subjecting these cells to single-nucleus RNA and ATAC sequencing, we identify several pathways that are dose-dependently regulated by CDX2 including VEGF and non-canonical WNT. snATAC-seq reveals that CDX2-Het cells retain a WT-like chromatin accessibility profile, suggesting accessibility alone is not sufficient to drive this variability in gene expression. Because the loss of CDX2 or TBXT phenocopy one another in vivo, we compared differentially expressed genes in our CDX2-KO to those from TBXT-KO hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and reveal pathways that may underlie the defects in vascular development and allantoic elongation seen in vivo.


Assuntos
Fator de Transcrição CDX2 , Dosagem de Genes , Redes Reguladoras de Genes , Células-Tronco Pluripotentes Induzidas , Humanos , Fator de Transcrição CDX2/genética , Diferenciação Celular/genética , Embrião de Mamíferos , Mesoderma
7.
Stem Cell Reports ; 19(3): 399-413, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38428414

RESUMO

Degenerative bone disorders have a significant impact on global health, and regeneration of articular cartilage remains a challenge. Existing cell therapies using mesenchymal stromal cells (MSCs) have shown limited efficacy, highlighting the necessity for alternative stem cell sources. Here, we have identified and characterized MSX1+ mesenchymal progenitor cells in the developing limb bud with remarkable osteochondral-regenerative and microenvironment-adaptive capabilities. Single-cell sequencing further revealed the presence of two major cell compositions within the MSX1+ cells, where a distinct PDGFRAlow subset retained the strongest osteochondral competency and could efficiently regenerate articular cartilage in vivo. Furthermore, a strategy was developed to generate MSX1+PDGFRAlow limb mesenchyme-like (LML) cells from human pluripotent stem cells that closely resembled their mouse counterparts, which were bipotential in vitro and could directly regenerate damaged cartilage in a mouse injury model. Together, our results indicated that MSX1+PDGFRAlow LML cells might be a prominent stem cell source for human cartilage regeneration.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Células-Tronco , Terapia Baseada em Transplante de Células e Tecidos , Mesoderma , Transplante de Células-Tronco Mesenquimais/métodos , Diferenciação Celular , Fator de Transcrição MSX1/genética
8.
Sci Adv ; 10(9): eadh7748, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427729

RESUMO

Mechanisms specifying amniotic ectoderm and surface ectoderm are unresolved in humans due to their close similarities in expression patterns and signal requirements. This lack of knowledge hinders the development of protocols to accurately model human embryogenesis. Here, we developed a human pluripotent stem cell model to investigate the divergence between amniotic and surface ectoderms. In the established culture system, cells differentiated into functional amnioblast-like cells. Single-cell RNA sequencing analyses of amnioblast differentiation revealed an intermediate cell state with enhanced surface ectoderm gene expression. Furthermore, when the differentiation started at the confluent condition, cells retained the expression profile of surface ectoderm. Collectively, we propose that human amniotic ectoderm and surface ectoderm are specified along a common nonneural ectoderm trajectory based on cell density. Our culture system also generated extraembryonic mesoderm-like cells from the primed pluripotent state. Together, this study provides an integrative understanding of the human nonneural ectoderm development and a model for embryonic and extraembryonic human development around gastrulation.


Assuntos
Ectoderma , Células-Tronco Pluripotentes , Humanos , Ectoderma/metabolismo , Diferenciação Celular/genética , Mesoderma
9.
Cells ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534378

RESUMO

Pluripotent stem cells can be differentiated into all three germ-layers including ecto-, endo-, and mesoderm in vitro. However, the early identification and rapid characterization of each germ-layer in response to chemical and physical induction of differentiation is limited. This is a long-standing issue for rapid and high-throughput screening to determine lineage specification efficiency. Here, we present deep learning (DL) methodologies for predicting and classifying early mesoderm cells differentiated from embryoid bodies (EBs) based on cellular and nuclear morphologies. Using a transgenic murine embryonic stem cell (mESC) line, namely OGTR1, we validated the upregulation of mesodermal genes (Brachyury (T): DsRed) in cells derived from EBs for the deep learning model training. Cells were classified into mesodermal and non-mesodermal (representing endo- and ectoderm) classes using a convolutional neural network (CNN) model called InceptionV3 which achieved a very high classification accuracy of 97% for phase images and 90% for nuclei images. In addition, we also performed image segmentation using an Attention U-Net CNN and obtained a mean intersection over union of 61% and 69% for phase-contrast and nuclear images, respectively. This work highlights the potential of integrating cell culture, imaging technologies, and deep learning methodologies in identifying lineage specification, thus contributing to the advancements in regenerative medicine. Collectively, our trained deep learning models can predict the mesoderm cells with high accuracy based on cellular and nuclear morphologies.


Assuntos
Aprendizado Profundo , Células-Tronco Pluripotentes , Animais , Camundongos , Diferenciação Celular/fisiologia , Camadas Germinativas/metabolismo , Mesoderma/metabolismo
10.
Curr Top Dev Biol ; 157: 1-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556456

RESUMO

This article is about how the famous organizer experiment has been perceived since it was first published in 1924. The experiment involves the production of a secondary embryo under the influence of a graft of a dorsal lip from an amphibian gastrula to a host embryo. The early experiments of Spemann and his school gave rise to a view that the whole early amphibian embryo was "indifferent" in terms of determination, except for a special region called "the organizer". This was viewed mainly as an agent of neural induction, also having the ability to generate an anteroposterior body pattern. Early biochemical efforts to isolate a factor emitted by the organizer were not successful but culminated in the definition of "neuralizing (N)" and "mesodermalizing (M)" factors present in a wide variety of animal tissues. By the 1950s this view became crystallized as a "two gradient" model involving the N and M factors, which explained the anteroposterior patterning effect. In the 1970s, the phenomenon of mesoderm induction was characterized as a process occurring before the commencement of gastrulation. Reinvestigation of the organizer effect using lineage labels gave rise to a more precise definition of the sequence of events. Since the 1980s, modern research using the tools of molecular biology, combined with microsurgery, has explained most of the processes involved. The organizer graft should now be seen as an experiment which involves multiple interactions: dorsoventral polarization following fertilization, mesoderm induction, the dorsalizing signal responsible for neuralization and dorsoventral patterning of the mesoderm, and additional factors responsible for anteroposterior patterning.


Assuntos
Desenvolvimento Embrionário , Mesoderma , Animais , Anfíbios , Biologia do Desenvolvimento , Padronização Corporal , Indução Embrionária , Organizadores Embrionários , Regulação da Expressão Gênica no Desenvolvimento
11.
Curr Top Dev Biol ; 157: 83-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556460

RESUMO

For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.


Assuntos
Encéfalo/embriologia , Face/embriologia , Camadas Germinativas , Mesoderma , Sistema Nervoso , Mesoderma/fisiologia , Morfogênese , Padronização Corporal
12.
Curr Top Dev Biol ; 157: 43-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556458

RESUMO

In avian and mammalian embryos the "organizer" property associated with neural induction of competent ectoderm into a neural plate and its subsequent patterning into rostro-caudal domains resides at the tip of the primitive streak before neurulation begins, and before a morphological Hensen's node is discernible. The same region and its later derivatives (like the notochord) also have the ability to "dorsalize" the adjacent mesoderm, for example by converting lateral plate mesoderm into paraxial (pre-somitic) mesoderm. Both neural induction and dorsalization of the mesoderm involve inhibition of BMP, and the former also requires other signals. This review surveys the key experiments done to elucidate the functions of the organizer and the mechanisms of neural induction in amniotes. We conclude that the mechanisms of neural induction in amniotes and anamniotes are likely to be largely the same; apparent differences are likely to be due to differences in experimental approaches dictated by embryo topology and other practical constraints. We also discuss the relationships between "neural induction" assessed by grafts of the organizer and normal neural plate development, as well as how neural induction relates to the generation of neuronal cells from embryonic and other stem cells in vitro.


Assuntos
Mesoderma , Somitos , Animais , Indução Embrionária/fisiologia , Aves , Mamíferos
13.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546044

RESUMO

The transcription factor brachyury (TBXT in humans) promotes epithelial-mesenchymal transition (EMT) both during gastrulation and in cancer contexts and is widely used as a marker of nascent mesoderm. In their study, Benoit Bruneau and colleagues reveal the role of TBXT dosage in early human gastrulation. To know more about their work, we spoke to the first author, Emily Bulgar, and the corresponding author, Benoit Bruneau, Professor at the Department of Pediatrics, University of California San Francisco (UCSF) and Director of the Gladstone Institute of Cardiovascular Disease.


Assuntos
Doenças Cardiovasculares , Neoplasias , Humanos , Transição Epitelial-Mesenquimal , Gastrulação , Mesoderma , Fatores de Transcrição
14.
Mol Biol Cell ; 35(5): ar69, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38536475

RESUMO

The regulation of the cytoskeleton by multiple signaling pathways, sometimes in parallel, is a common principle of morphogenesis. A classic example of regulation by parallel pathways is Drosophila gastrulation, where the inputs from the Folded gastrulation (Fog)/Concertina (Cta) and the T48 pathways induce apical constriction and mesoderm invagination. Whether there are distinct roles for these separate pathways in regulating the complex spatial and temporal patterns of cytoskeletal activity that accompany early embryo development is still poorly understood. We investigated the roles of the Fog/Cta and T48 pathways and found that, by themselves, the Cta and T48 pathways both promote timely mesoderm invagination and apical myosin II accumulation, with Cta being required for timely cell shape change ahead of mitotic cell division. We also identified distinct functions of T48 and Cta in regulating cellularization and the uniformity of the apical myosin II network, respectively. Our results demonstrate that both redundant and distinct functions for the Fog/Cta and T48 pathways exist.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Gastrulação , Proteínas de Drosophila/metabolismo , Morfogênese , Mesoderma , Miosina Tipo II/metabolismo , Drosophila melanogaster/metabolismo
15.
Elife ; 132024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441552

RESUMO

The mammary gland is a unique organ that undergoes dynamic alterations throughout a female's reproductive life, making it an ideal model for developmental, stem cell and cancer biology research. Mammary gland development begins in utero and proceeds via a quiescent bud stage before the initial outgrowth and subsequent branching morphogenesis. How mammary epithelial cells transit from quiescence to an actively proliferating and branching tissue during embryogenesis and, importantly, how the branch pattern is determined remain largely unknown. Here, we provide evidence indicating that epithelial cell proliferation and onset of branching are independent processes, yet partially coordinated by the Eda signaling pathway. Through heterotypic and heterochronic epithelial-mesenchymal recombination experiments between mouse mammary and salivary gland tissues and ex vivo live imaging, we demonstrate that unlike previously concluded, the mode of branching is an intrinsic property of the mammary epithelium whereas the pace of growth and the density of ductal tree are determined by the mesenchyme. Transcriptomic profiling and ex vivo and in vivo functional studies in mice disclose that mesenchymal Wnt/ß-catenin signaling, and in particular IGF-1 downstream of it critically regulate mammary gland growth. These results underscore the general need to carefully deconstruct the different developmental processes producing branched organs.


Assuntos
Células Epiteliais , Via de Sinalização Wnt , Camundongos , Animais , Epitélio/metabolismo , Células Epiteliais/fisiologia , Proliferação de Células , Morfogênese , Mesoderma , Glândulas Mamárias Animais/metabolismo
16.
Results Probl Cell Differ ; 72: 27-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509251

RESUMO

As epiblast cells initiate development into various somatic cells, they undergo a large-scale reorganization, called gastrulation. The gastrulation of the epiblast cells produces three groups of cells: the endoderm layer, the collection of miscellaneous mesodermal tissues, and the ectodermal layer, which includes the neural, epidermal, and associated tissues. Most studies of gastrulation have focused on the formation of the tissues that provide the primary route for cell reorganization, that is, the primitive streak, in the chicken and mouse. In contrast, how gastrulation alters epiblast-derived cells has remained underinvestigated. This chapter highlights the regulation of cell and tissue fate via the gastrulation process. The roles and regulatory functions of neuromesodermal progenitors (NMPs) in the gastrulation process, elucidated in the last decade, are discussed in depth to resolve points of confusion. Chicken and mouse embryos, which form a primitive streak as the site of mesoderm precursor ingression, have been investigated extensively. However, primitive streak formation is an exception, even among amniotes. The roles of gastrulation processes in generating various somatic tissues will be discussed broadly.


Assuntos
Gástrula , Gastrulação , Camundongos , Animais , Mesoderma , Endoderma , Desenvolvimento Embrionário
17.
Results Probl Cell Differ ; 72: 119-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509255

RESUMO

Many organs are composed of epithelial and mesenchymal tissue components. These two tissue component types develop via reciprocal interactions. However, for historical and technical reasons, the effects of the mesenchymal components on the epithelium have been emphasized. Well-documented examples are the regionally specific differentiation of the endoderm-derived primitive gut tube under the influence of surrounding mesenchyme. In contrast to a pile of reports on mesenchyme-derived signaling mechanisms, few studies have depicted the epithelial action in depth. This chapter highlights an example of an opposite action from the epithelial side, which was found in esophagus development.


Assuntos
Organogênese , Transdução de Sinais , Epitélio , Mesoderma , Diferenciação Celular
18.
Dev Cell ; 59(6): 705-722.e8, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38354738

RESUMO

Wnt signaling is a critical determinant of cell lineage development. This study used Wnt dose-dependent induction programs to gain insights into molecular regulation of stem cell differentiation. We performed single-cell RNA sequencing of hiPSCs responding to a dose escalation protocol with Wnt agonist CHIR-99021 during the exit from pluripotency to identify cell types and genetic activity driven by Wnt stimulation. Results of activated gene sets and cell types were used to build a multiple regression model that predicts the efficiency of cardiomyocyte differentiation. Cross-referencing Wnt-associated gene expression profiles to the Connectivity Map database, we identified the small-molecule drug, tranilast. We found that tranilast synergistically activates Wnt signaling to promote cardiac lineage differentiation, which we validate by in vitro analysis of hiPSC differentiation and in vivo analysis of developing quail embryos. Our study provides an integrated workflow that links experimental datasets, prediction models, and small-molecule databases to identify drug-like compounds that control cell differentiation.


Assuntos
Miócitos Cardíacos , Via de Sinalização Wnt , ortoaminobenzoatos , Miócitos Cardíacos/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Via de Sinalização Wnt/genética , Mesoderma
19.
Development ; 151(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345319

RESUMO

The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular , Cromatina/metabolismo , Expressão Gênica , Mesoderma/metabolismo , Somitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
20.
Sci Total Environ ; 922: 171242, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417504

RESUMO

Tris(2-chloroethyl) phosphate (TCEP) is an organophosphorus flame retardant used worldwide and has been detected in the tissues and eggs of wild birds. Our previous study reported that exposure to TCEP induced developmental delay and cardiovascular dysfunction with attenuated heart rate and vasculogenesis in early chicken embryos. This study aimed to investigate the molecular mechanisms underlying the cardiovascular effects of TCEP on chicken embryos using cardiac transcriptome analysis and to examine whether TCEP exposure affects epithelial-mesenchymal transition (EMT) and mesoderm differentiation during gastrulation. Transcriptome analysis revealed that TCEP exposure decreased the expression of cardiac conduction-related genes and transcription factors on day 5 of incubation. In extraembryonic blood vessels, the expression levels of genes related to fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) were significantly reduced by TCEP exposure and vasculogenesis was suppressed. TCEP exposure also attenuated Snail family transcriptional repressor 2 (SNAI2) and T-box transcription factor T (TBXT) signaling in the chicken primitive streak, indicating that TCEP inhibits EMT and mesoderm differentiation during gastrulation at the early developmental stage. These effects on EMT and mesoderm differentiation may be related to subsequent phenotypic defects, including suppression of heart development and blood vessel formation.


Assuntos
Galinhas , Retardadores de Chama , Fosfinas , Animais , Embrião de Galinha , Galinhas/metabolismo , Compostos Organofosforados , Gastrulação , Retardadores de Chama/metabolismo , Fator A de Crescimento do Endotélio Vascular , Organofosfatos , Transição Epitelial-Mesenquimal , Fosfatos , Mesoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...